APPLY THE MATH: Graphing Quadratic Functions

ID: 9406

1. The vertex form of a parabola is \qquad .
2. The coefficient \qquad determines whether the parabola opens upward or downward, and how wide the parabola is. The vertex of the parabola is the point with coordinates \qquad The equation of the axis of symmetry is $x=$ \qquad .
3. The standard form of a parabola is \qquad .
4. The x-coordinate of the vertex is \qquad The equation of the axis of symmetry is $x=$ \qquad The y-intercept is \qquad .

Sketch the graph of each function. Identify the vertex and the equation of the axis of symmetry. Then check your graphs with your calculator.
5. $y=x^{2}+4$
6. $y=(x-3)^{2}+5$

vertex \qquad axis of symmetry \qquad
8. $y=x^{2}+6 x+9$

vertex \qquad
axis of symmetry \qquad
vertex \qquad
axis of symmetry \qquad
vertex \qquad
axis of symmetry \qquad

Translations of the form $y=a(x-h)^{2}+k$
Graph the following on a single set of axis
$y=x^{2}$
$y=2 x^{2}$
$y=1 / 2 x^{2}$
$y=-x^{2}$

Graph the following on a single set of axis
$y=x^{2}+1$
$y=x^{2}-3$
$y=-x^{2}+2$

Graph the following on a single set of axis
$y=x^{2}$

$$
y=(x+3)^{2}
$$

$$
y=(x-2)^{2}
$$

$y=(x-2)^{2}+4 \quad y=-3(x+2)-4$

In the equation $y=a(x-h)^{2}+k$ how do the constants $\mathrm{A}, \mathrm{h}, \mathrm{k}$ alter the graph?
$a=$ \qquad
\qquad
$\mathrm{h}=$ \qquad
$\mathrm{k}=$ \qquad
\qquad

