APPLY THE MATH: Graphing Quadratic Functions

ID: 9406

- 1. The vertex form of a parabola is _____.
- The coefficient _____ determines whether the parabola opens upward or downward, and how wide the parabola is. The vertex of the parabola is the point with coordinates _____. The equation of the axis of symmetry is x = ____.

3. The standard form of a parabola is _____

The *x*-coordinate of the vertex is _____. The equation of the axis of symmetry is x = ____. The *y*-intercept is _____.

Sketch the graph of each function. Identify the vertex and the equation of the axis of symmetry. Then check your graphs with your calculator.

©2008 Texas Instruments Incorporated

Graphing Quadratic Functions

Translations of the form $y = a(x-h)^2 + k$

Graph the following on a single set of axis

$$y=x^{2}$$
 $y=2x^{2}$
 $y=\frac{1}{2}x^{2}$ $y=-x^{2}$

Graph the following on a single set of axis

$$y=x^2+1$$
 $y=x^2-3$

 $y = -x^{2}+2$

Graph the following on a single set of axis

 $y=x^2$ $y=(x+3)^2$ $y=(x-2)^2$

 $y=(x-2)^2+4$ y=-3(x+2)-4

In the equation $y = a(x - h)^2 + k$ how do the constants A, h, k alter the graph?

a=_____

h=_____

k=