MATH ANALYSIS I HONORS

Review for chapter 1 test (2 day test- 100 points)
Name \qquad
Quadratics

1. Find the points of intersection, if any exist, for the following parabola and line. Do so by graphing by hand and confirm algebraically.
$y=x^{2}-4 \quad 2 x-y=5$
2. Find the discriminant of $y=x^{2}+4 x+4$. What does it tell you about the roots and graph?
3. Sketch the parabola $y=-x^{2}+4 x-4$

Find and label the following:
vertex
x-intercept(s)
y-intercept
axis of symmetry
4. Sketch the parabola $y=(x-3)^{2}+2$

Find and label the following:
vertex
x-intercept(s)
y-intercept
axis of symmetry
5. Graph the following by hand. Estimate the point(s) of intersection. Then, algebraically find the point(s) of intersection.
$2 x-y=-2$
$y=-x^{2}+4 x+1$
6. Using a graphing calculator, find the coordinates of the root(s) and vertex of the parabola and the point(s) of intersection of the line and parabola. Round to 3 decimal places.
$y=x^{2}-6 x-2$
$y=-2 x+4$
7. Use the given values of the function to find an equation of the form $f(x)=a x^{2}+b x+c$.

$$
\mathrm{f}(1)=1 \quad \mathrm{f}(2)=8 \quad \mathrm{f}(3)=23
$$

8) Simplify

In Exercises 1-8, match the quadratic function with its graph. [The graphs are labeled (a), (b), (c), (d), (e), (f), (g), and (h).]
a) $\sqrt{-90}=$
b) $(4-3)(5+2 i)=$
(a)

(b)

e) $\frac{2+5 i}{3-2 i}=$
9) Solve each by the indicated method.
a) $(3 x-2)(x+4)=24$ by factoring
b) $2 x^{2}-4 x+5=0$ by completing the square.
(c)

(d)

(e)

(f)

(h)

c) $7 x^{2}+x+1=0$ by the quadratic formula.

1. $f(x)=(x-2)^{2}$
2. $f(x)=(x+4)^{2}$
3. $f(x)=x^{2}-2$
4. $f(x)=3-x^{2}$
5. $f(x)=4-(x-2)^{2}$
6. $f(x)=(x+1)^{2}-2$
7. $f(x)=-(x-3)^{2}-2$
8. $f(x)=-(x-4)^{2}$
d) $\frac{2 x}{x-4}+\frac{4}{x+4}=\frac{-32}{x^{2}-16}$ by any method.
10) Find the vertex, axis of symmetry, x and y intercepts and graph the function: $y=x^{2}+2 x-15$
11) Find the discriminant. What does it tell you about the parabola?

$$
y=x^{2}-9
$$

12) Find the equation of the parabola with x intercepts at 1 and -5 and y-intercept at 15 .
