1. $(1,-3)$ one point of intersection - tangent
2. Discriminant $=0$ so there is one real root (double root) so the graph is tangent to the x-axis, meaning it touches the x-axis in one place and bounces off.
3. vertex $(2,0)$
x-ints. $(2,0)$ double root
y-int. (0, -4)
axis of symmetry: $x=2$
sad parabola
4. vertex $(3,2)$
x-ints. None - comes out imaginary
y-int. $(0,11)$
axis of symmetry: $x=3$
happy parabola
5. $(1,4)$ one point of intersection - tangent
6. Roots $(-0.317,0) \&(6.317,0)$

Vertex = minimum $(3,-11)$
Intersections (5.162, -6.325) \& (-1.162, 6.325)
7. $f(x)=4 x^{2}-5 x+2$
8. a) $3 i \sqrt{10}$
b) $26-7 i$
c) $-i$
d) $16-30 i$
e) $\frac{-4+19 i}{13}$
9. a) $(3 x+16)(x-2)=0 \quad x=-16 / 3, x=2$
b) $(x-1)^{2}=-3 / 2 \quad$ Divide by 2 and add 1 to both sides. $x=1 \pm i \sqrt{\frac{3}{2}}=1 \pm i \frac{\sqrt{6}}{2}$
c) $x=\frac{-1 \pm 3 i \sqrt{3}}{14}$
d) Muliply by LCD: $x^{2}-16 \quad x=-2 \quad$ Gained a root of $x=-4 \quad$ (cross it out)
10. vertex $(-1,-16)$
axis of symmetry: $x=-1$
y-int. (0, -15)
x-ints. $(-5,0)(3,0)$
Happy parabola
11. discriminant $=36>0$ means two real different roots so the parabola crosses the x-axis twice.
12. $y=-3 x^{2}-12 x+15$

Matching

1. g
2. f
3. c
4. a
5. b
6. e
7. h
8. d
