MATH ANALYSIS I HONORS

REVIEW \#1

Chapters 1 and 2

1. Find the equation of the line parallel to $5 x-2 y=6$ with a y-intercept of 3 .
2. Find the point of intersection between the lines $2 x-2 y=-6$ and $5 x+y=21$.
3. Find the coordinates of the vertex of the parabola $y=2 x^{2}+6 x-15$.
4. Find the equation of the straight line containing the points $(4,-7)$ and $(-5,2)$.
5. The imaginary number $\mathrm{i}^{30}=$?
6. Simplify $\sqrt{-18}$.
7. Find the product of the complex numbers $(2-i)$ and $(3+2 i)$.
8. Simplify $\frac{5+2 \mathrm{i}}{1+\mathrm{i}}$.
9. If $f(x)=x^{2}-3 x+2$ is a parabola, find the value of x where $f(x)$ is at its minimum.
10. Find an equation for the following function:

MATH ANAYSIS I HONORS

REVIEW \#2
Chapters 2 \& 3

1. Find a possible equation for the quartic function with roots of 0,3 , and a double root at -4 .
2. How many real roots does the equation $x^{\wedge} 3+4 x$ have?
3. Find a possible equation for the cubic function with roots of 5,3 , and $-3 i$.
4. Given the function $f(x)=x^{\wedge} 3-5 x^{\wedge} 2+K x+3$, find K if $f(3)=0$.
5. Find the solution set to the inequality $|2 x-1| \leq 4$.
6. Find the solution set to the inequality $\mid x+5$ I ≤-2.
7. Find the solution set to the inequality $5<13 x+7$.
8. Find the solution set to the inequality $(X-2)(x+4) \geq 0$.
9. The solution set of $y+3 x>9$ lies in which quadrants?

MATH ANALYSIS 1 HONORS
REVIEW \#3
CHAPTERS 4, 7

1. What is the domain of the function $f(x)=5 x^{2}+1$
2. What is the range of the function $f(x)=5 x^{2}+1$
3. what is the definition of a function? What is true about the graphs of functions?
4. If $f(x)=1 / 2 x-6$, what is $f^{-1}(x)$
5. if $f(x)=x^{2}+x+3$ and $g(x)=2 x-3$, what is $f(g(x))$, what is $g(f(x))$
6. What types of functions have inverse functions? What is true about their graphs?
7. If $\tan x=7 / 3$ and $0<x<\pi / 2$, then $\sin x=$
8. Given the point $(-1,3)$ find the $\cos \theta$
9. Express the cos of 210° in radical form (refer to chart)
10. Express 150° in radians
11. Which angles have the same cosecant as 60°
12. In which quadrants is secant negative?
13. At what two angles, expressed in radians, is secant undefined? At what angles is cotangent undefined?

Review \#4
Chapter 8
2. Find the inclination of the line $2 x+4 y=5$
3. Solve $5 \sin \theta=-2$ for $0^{\circ} \leq \theta \leq 360$
4. Solve $2-\tan \theta=7 \quad$ for $\quad 0^{\circ} \leq \theta \leq 2 \pi$
5. solve $2 \sec \theta+3=0$ for $0^{\circ} \leq \theta \leq 360$
6. What is the period and the amplitude of the periodic function $\mathrm{y}=2 \sin 1 / 2 \mathrm{x}$?
7. Find an equation for the trigonometric function graphed below

8. Graph the function $y-2=3 \cos 2(x-1)$
9. Simplify the following $\tan \mathrm{A}(\sin \mathrm{A}-\csc \mathrm{A})$
10. Simplify $(\sec X)(\csc \mathrm{X})$ $\operatorname{Cot} \mathrm{X}$
11. Solve for $0^{\circ} \leq \theta \leq 360$ in the following $3 \sin \theta=2 \cos \theta$
12. Solve for $0^{\circ} \leq \theta \leq 360$ in the following $\tan ^{2} \theta=10-3 \tan \theta$

MATH ANALYSIS I HONORS

REVIEW \#5

Chapters 9 and 5

1. The sides of an isosceles triangle have lengths 10,10 , and 15 . What are the measures of the angles?
2. At a distance of 125 m , the angle of elevation to the top of a tree is 15°. How tall is the tree?
3. How many different triangles ABC can be constructed using the following information?
a. $\angle B=65^{\circ}, a=6$, and $b=5$.
b. $\angle \mathrm{A}=25^{\circ}, \mathrm{a}=5$, and $\mathrm{b}=9$.
4. Observers at points A and B sight an airplane between them at angles of elevation of 50° and 68°, respectively. If the observers are 50 km apart, how far is each observer from the plane?
5. A triangle has sides of length 6,11 , and 14 . What are the measures of the angles?
6. Two ships start at the same point, but embark on courses that differ by 105°. If one ship travels at 100 mph and the other at 125 mph , how far apart are the ships after $21 / 2$ hours?
7. Evaluate the following:
a. $\frac{2^{7} 4^{-2}}{\sqrt{2^{-4}}}$
b. $\left(2^{-3}+2^{0}\right)^{-2}$
8. Solve the following equations for x :
a. $3^{5-x}=9^{x+2}$
b. $32^{x}=4^{3 x}$
9. Evaluate the following: $3 \ln \mathrm{e}$

MATH ANALYSIS I HONORS

REVIEW \#6

Chapters 5 and 6

1. Find the exact value of the following.
a. $\log _{2} 32$
b. $\log _{2} 0.25$
c. $\log 0.1$
2. Express y as a function of x.
a. $\log _{2} y=2 \log _{2}(2 x)$
b. $\log _{2} y=\log _{2} x+3 \log _{2} 3-\log _{2} 10$
3. Express each of the following in terms of $\log \mathrm{M}$ and $\log \mathrm{N}$.
a. $\log \sqrt[3]{\mathrm{N}^{4} \mathrm{M}^{2}}$
b. $\log \left(M / N^{3}\right)$
4. Find the following logarithms.
a. $\log _{5} 32$
b. $\log _{3} 45$
5. Find the coordinates where the line $x-y=2$ and the circle $x^{2}+y^{2}=4$ intersect.
6. Find the coordinates of the vertices and the foci of the ellipse with the equation $9 x^{2}+16 y^{2}=144$.
7. Find an equation for the ellipse that has vertices at $(0,5)$ and $(0,-5)$, and a minor axis with a total length of 8 .
8. a. Find an equation for the hyperbola that satisfies the following.

Center at $(0,0)$, vertex at $(4,0)$ and a focus at $(\sqrt{20}, 0)$
b. Find the equations of the asymptotes.
9. Find the coordinates of the vertex and focus, and the equation of the directrix for the parabola $y=(1 / 8) x^{2}$.
10. Find the vertex of the parabola with a directrix of $x=1$ and a focus of $(7,0)$.
\qquad
Math Analysis-
Final Exam Open ended Review-2014- Scientific calculator Only

1. At a certain dock, the high tide occurs at 2:30 AM and the water is a depth of 20 feet, while low tide occurs at 9 AM and the water is a depth of 7 feet.
a) Draw a graph to model the depth of water at the dock as a function of the time after midnight. Label each axis.
b) Find a trigonometric equation to represent the given data. (Let $t=0$ represent 12:00 am midnight)
c) What is the depth of the water at 3:30 P.M.?
2. Classify the conic. Write in standard form and graph. Label all relevant parts of the conic.
a) $9 x^{2}-4 y^{2}+36 x+8 y-4=0$
b) $3 y^{2}+24 x-6 y-51=0$

3 Find- zero(s), domain, range, vertex, y-intercept for each
a) $f(x)=x^{3}+6 x^{2}+5 x$
b) $f(x)=(x-2)^{2}+1$
4. Algebraically, find the points of intersection
$y-x=1$
$y=x^{2}-2 x-3$

